Remove Hadoop Remove Media Remove Structured Data
article thumbnail

Implementing the Netflix Media Database

Netflix Tech

In the previous blog posts in this series, we introduced the N etflix M edia D ata B ase ( NMDB ) and its salient “Media Document” data model. A fundamental requirement for any lasting data system is that it should scale along with the growth of the business applications it wishes to serve.

Media 96
article thumbnail

Data Warehouse vs Big Data

Knowledge Hut

Data warehouses are typically built using traditional relational database systems, employing techniques like Extract, Transform, Load (ETL) to integrate and organize data. Data warehousing offers several advantages. By structuring data in a predefined schema, data warehouses ensure data consistency and accuracy.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How to Design a Modern, Robust Data Ingestion Architecture

Monte Carlo

Data Storage with Apache HBase : Provides scalable, high-performance storage for structured and semi-structured data. Data Analysis and Visualization with Apache Superset : Data exploration and visualization platform for creating interactive dashboards.

article thumbnail

Hadoop Use Cases

ProjectPro

Hadoop is beginning to live up to its promise of being the backbone technology for Big Data storage and analytics. Companies across the globe have started to migrate their data into Hadoop to join the stalwarts who already adopted Hadoop a while ago. All Data is not Big Data and might not require a Hadoop solution.

Hadoop 40
article thumbnail

Sqoop vs. Flume Battle of the Hadoop ETL tools

ProjectPro

Apache Hadoop is synonymous with big data for its cost-effectiveness and its attribute of scalability for processing petabytes of data. Data analysis using hadoop is just half the battle won. Getting data into the Hadoop cluster plays a critical role in any big data deployment.

article thumbnail

A Prequel to Data Mesh

Towards Data Science

The concept of `Data Marts` was introduced. Image by the author 2004 to 2010 — The elephant enters the room New wave of applications emerged — Social Media, Software observability, etc. New data formats emerged — JSON, Avro, Parquet, XML etc. Result: Hadoop & NoSQL frameworks emerged. So what was missing?

article thumbnail

Top Hadoop Projects and Spark Projects for Beginners 2021

ProjectPro

Big data has taken over many aspects of our lives and as it continues to grow and expand, big data is creating the need for better and faster data storage and analysis. These Apache Hadoop projects are mostly into migration, integration, scalability, data analytics, and streaming analysis. Data Migration 2.

Hadoop 52