Remove Hadoop Remove NoSQL Remove Pipeline-centric
article thumbnail

Hadoop vs Spark: Main Big Data Tools Explained

AltexSoft

Hadoop and Spark are the two most popular platforms for Big Data processing. To come to the right decision, we need to divide this big question into several smaller ones — namely: What is Hadoop? To come to the right decision, we need to divide this big question into several smaller ones — namely: What is Hadoop? scalability.

article thumbnail

Recap of Hadoop News for September

ProjectPro

News on Hadoop-September 2016 HPE adapts Vertica analytical database to world with Hadoop, Spark.TechTarget.com,September 1, 2016. has expanded its analytical database support for Apache Hadoop and Spark integration and also to enhance Apache Kafka management pipeline. Broadwayworld.com, September 13,2016.

Hadoop 52
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

How to Become a Data Engineer in 2024?

Knowledge Hut

Data Engineering is typically a software engineering role that focuses deeply on data – namely, data workflows, data pipelines, and the ETL (Extract, Transform, Load) process. Data Engineers are engineers responsible for uncovering trends in data sets and building algorithms and data pipelines to make raw data beneficial for the organization.

article thumbnail

Data Engineer Roles And Responsibilities 2022

U-Next

NoSQL – This alternative kind of data storage and processing is gaining popularity. The term “NoSQL” refers to technology that is not dependent on SQL, to put it simply. Hadoop Apache Data Engineers utilize the open-source Hadoop platform to store and process enormous volumes of data.

article thumbnail

Every Company is Becoming a Software Company

Confluent

Of course, this is not to imply that companies will become only software (there are still plenty of people in even the most software-centric companies), just that the full scope of the business is captured in an integrated software defined process. Here, the bank loan business division has essentially become software.

article thumbnail

97 things every data engineer should know

Grouparoo

This provided a nice overview of the breadth of topics that are relevant to data engineering including data warehouses/lakes, pipelines, metadata, security, compliance, quality, and working with other teams. 7 Be Intentional About the Batching Model in Your Data Pipelines Different batching models. Test system with A/A test.

article thumbnail

?Data Engineer vs Machine Learning Engineer: What to Choose?

Knowledge Hut

In addition, they are responsible for developing pipelines that turn raw data into formats that data consumers can use easily. Pipeline-Centric Engineer: These data engineers prefer to serve in distributed systems and more challenging projects of data science with a midsize data analytics team.