Remove NoSQL Remove Raw Data Remove Structured Data
article thumbnail

From Schemaless Ingest to Smart Schema: Enabling SQL on Raw Data

Rockset

You have complex, semi-structured data—nested JSON or XML, for instance, containing mixed types, sparse fields, and null values. It's messy, you don't understand how it's structured, and new fields appear every so often. Organizations will typically build hard-to-maintain ETL pipelines to feed data into their SQL systems.

article thumbnail

Smart Schema: Enabling SQL Queries on Semi-Structured Data

Rockset

In this blog post, we show how Rockset’s Smart Schema feature lets developers use real-time SQL queries to extract meaningful insights from raw semi-structured data ingested without a predefined schema. This is particularly true given the nature of real-world data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

A Guide to Data Pipelines (And How to Design One From Scratch)

Striim

Third-Party Data: External data sources that your company does not collect directly but integrates to enhance insights or support decision-making. These data sources serve as the starting point for the pipeline, providing the raw data that will be ingested, processed, and analyzed.

article thumbnail

Differences Between Business Intelligence vs Data Science

Knowledge Hut

Data Science is the field that focuses on gathering data from multiple sources using different tools and techniques. Whereas, Business Intelligence is the set of technologies and applications that are helpful in drawing meaningful information from raw data. Business Intelligence only deals with structured data.

article thumbnail

Mythbusting: The Venerable SQL Database and Today’s Real-Time Analytics

Rockset

While it ensured data integrity, the distributed two-phase lock added a massive delay to SQL database writes — so massive that it inspired the rise of NoSQL databases optimized for fast data writes, such as HBase, Couchbase, and Cassandra. Which is why raw data streams cannot be ingested by traditional rigid SQL databases.

article thumbnail

ELT Explained: What You Need to Know

Ascend.io

More importantly, we will contextualize ELT in the current scenario, where data is perpetually in motion, and the boundaries of innovation are constantly being redrawn. Extract The initial stage of the ELT process is the extraction of data from various source systems. What Is ELT? So, what exactly is ELT?

article thumbnail

Data Collection for Machine Learning: Steps, Methods, and Best Practices

AltexSoft

Data collection revolves around gathering raw data from various sources, with the objective of using it for analysis and decision-making. It includes manual data entries, online surveys, extracting information from documents and databases, capturing signals from sensors, and more.